Quantum versus population dynamics over Cayley graphs
نویسندگان
چکیده
Consider a graph whose vertices are populated by identical objects, together with an algorithm for the time-evolution of number objects placed at each vertices. The discrete dynamics these can be observed and studied using simple inexpensive laboratory settings. There many similarities but also differences between such population quantum particle hopping on same graph. In this work, we show that specific decoration original enables exact mapping models dynamics. As such, over graphs is yet another classical platform simulate effects. Several examples used to demonstrate claim.
منابع مشابه
Quantum Walks on Cayley Graphs
We address the problem of the construction of quantum walks on Cayley graphs. Our main motivation is the relationship between quantum algorithms and quantum walks. In particular, we discuss the choice of the dimension of the local Hilbert space and consider various classes of graphs on which the structure of quantum walks may differ. We completely characterise quantum walks on free groups and p...
متن کاملGraph product of generalized Cayley graphs over polygroups
In this paper, we introduce a suitable generalization of Cayley graphs that is defined over polygroups (GCP-graph) and give some examples and properties. Then, we mention a generalization of NEPS that contains some known graph operations and apply to GCP-graphs. Finally, we prove that the product of GCP-graphs is again a GCP-graph.
متن کاملAlgebraic Cayley graphs over finite fields
Article history: Received 6 April 2013 Received in revised form 23 January 2014 Accepted 25 January 2014 Available online xxxx Communicated by Igor Shparlinski MSC: 11L40 05C75 05C50
متن کاملIntegral Cayley Graphs over Abelian Groups
Let Γ be a finite, additive group, S ⊆ Γ, 0 6∈ S, − S = {−s : s ∈ S} = S. The undirected Cayley graph Cay(Γ, S) has vertex set Γ and edge set {{a, b} : a, b ∈ Γ, a − b ∈ S}. A graph is called integral, if all of its eigenvalues are integers. For an abelian group Γ we show that Cay(Γ, S) is integral, if S belongs to the Boolean algebra B(Γ) generated by the subgroups of Γ. The converse is proven...
متن کاملExploring scalar quantum walks on Cayley graphs
A quantum walk, i.e., the quantum evolution of a particle on a graph, is termed scalar if the internal space of the moving particle (often called the coin) has dimension one. Here, we study the existence of scalar quantum walks on Cayley graphs, which are built from the generators of a group. After deriving a necessary condition on these generators for the existence of a scalar quantum walk, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Physics
سال: 2023
ISSN: ['1096-035X', '0003-4916']
DOI: https://doi.org/10.1016/j.aop.2023.169430